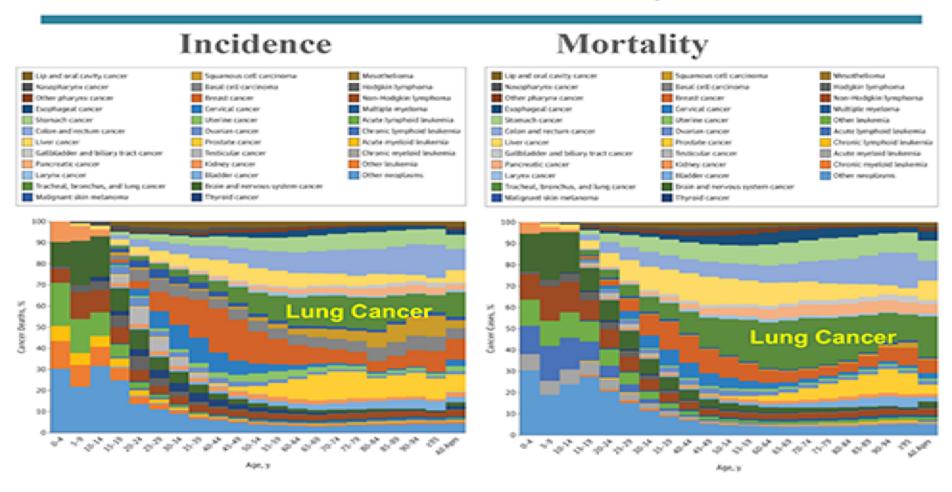
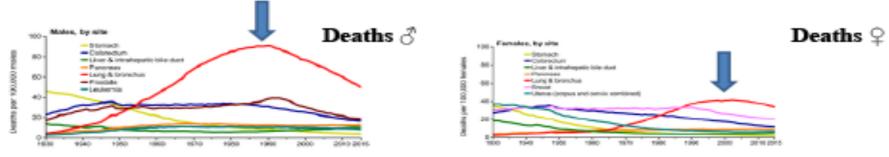
Non-small cell lung cancer


Non-small Cell Lung Cancer

Eva Szabo, MD
Chief, Lung and Upper Aerodigestive
Cancer Research Group
Division of Cancer Prevention, NCI

Global incidence and mortality

Global Cancer Incidence and Mortality, 1990-2016

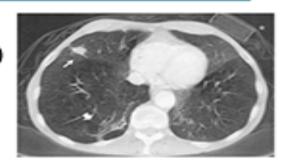

Fitzmaurice C et al., JAMA Oncol 2018 epub

Cancer Statistics, 2019

US Lung Cancer Statistics, 2019

- 228,150 estimated new cases (lung and bronchus)
- 142,670 estimated deaths
- leading cause of cancer deaths
 - greater than breast+prostate+colon
 - death rate per 100,000 decreasing (90.56 in 1990; 67.45 in 2006)
 - Incidence declining in men since mid-1980's, women since mid-2000's
- 20% five year survival
 - 5% in 1950's, 12% in 1970's

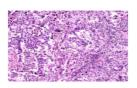
26% of all male cancer deaths, 25% of all female cancer deaths



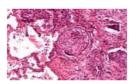
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annualcancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf

Risk factors

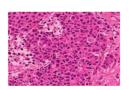
Risk Factors

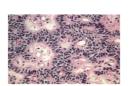

- Tobacco, tobacco, tobacco (85% lung ca.)
 - Including passive smoking
 - Prior aerodigestive malignancy
 - COPD
- Other exposures
 - Asbestos, radon, polycyclic aromatic hydrocarbons, chromium, nickel, inorganic arsenic – mining, ship building, oil refining
- Genetic predisposition
 - Familial lung cancer Germline mutations EGFR T790M
 - Bell et al., Nat Gen 2005;37:1315
 - 15q24-25.1 nicotinic acetylcholine receptor subunits CHRNA3 and CHRNA5, OR=1.3, attributable risk ~14%
 - Amos et al., Nat Gen 2008;40:616, Hung et al. Nature 2008;452;633, Thorgeirsson et al. Nature 2008;452:638
 - CH3NA3/5 is also susceptibility locus for COPD
 - Pillai et al. PLoS Genet 2009;5:1

Pathology: NSCLC

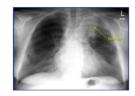

Pathology: Non-small Cell Lung Cancer

- Adenocarcinoma, inc bronchoalveolar
 - **40%**





- Squamous cell carcinoma
 - -20%
- Large cell carcinoma
 - -15%
- Others (carcinoid, etc.)



Lung carcinogenesis

The Continuum of Lung Carcinogenesis Opportunities for Intervention

Normal → Hyper/Metaplasia → Dysplasia → Early-Late Cancer

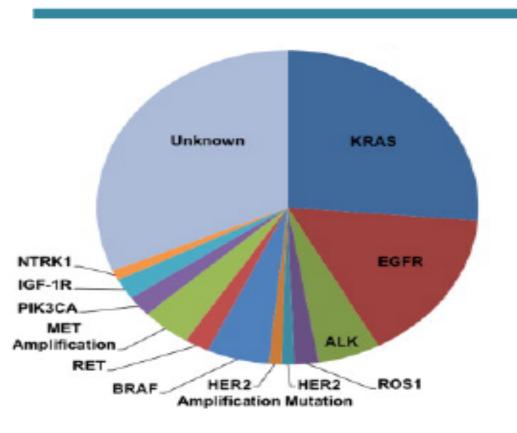
Prevention

Early Detection

Treatment

Treatment Strategies for Lung Cancer

- Treatment based on stage:
 - Early stage (Stage I) surgery
 - Early stage (Stage II, IIIA resected)-surgery + adjuvant chemo
 - Regional spread (IIIA/IIIB) combined modality (chemoradiation; +/- surgery for IIIA)
 - Metastatic (IIIB "wet"/IV)— chemotherapy, radiation as needed for local control, occasional resection of isolated metastases
- Small cell lung cancer: chemotherapy (+thoracic radiation for limited stage; prophylactic cranial radiation to prevent brain mets)


Treatment options

Treatment Options for Metastatic NSCLC

- Chemotherapy
 - Platinum doublets, iv
 - Adjuvant, metastatic disease
 - Still a mainstay of treatment
- Targeted therapy
 - For minority of patients with targetable mutations
 - Oral therapies, better tolerance
 - Extended survival
- Immunotherapy
 - Now a definitive role, frontline and second line

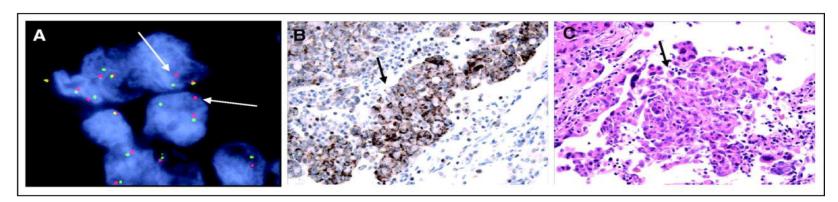
Personalizing Therapy for NSCLC

Personalizing Therapy for NSCLC Genetic Abnormalities in Lung Adenocarcinoma

Targetable mutations/gene fusions

- EGFR
 - multiple drugs
- ALK
 - multiple drugs
- ROS1
 - crizotinib
- BRAF-V600E only
 - dabrafenib/trametinib
- RET
 - Experimental drugs (BLU-667)
- NTRK
 - larotrectinib
- MET ex 14 skipping
 - crizotinib
- HER2/Neu exon 20 mutations
 - HER2 antibodies + chemo

*Response rates 50-80%

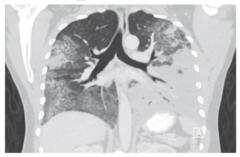

EGFR as a Target for NSCLC Standard of Care in 2015

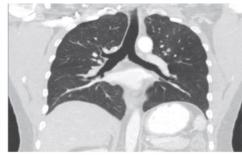
- Epidermal growth factor receptor (EGFR) inhibition in advanced NSCLC
 - 10% response rate in advanced disease, 30% prolonged stabilization
 - Survival advantage (erlotinib)
 - Shepherd, F. A. et al. N Engl J Med 2005;353:123-132
 - Mutually exclusive with K-ras
 - Most benefit for non-smoking related NSCLC, with EGFR mutations (females, adenocarcinomas, Asian)
 - Lynch et al., NEJM 350:2129, 2004; Paez et al., Science 304:1497, 2004; Pao et al., PNAS 101:13306, 2004
 - Mechanisms of secondary resistance to EGFR inhibitors being identified (T790M mutation-50%, Met amplification-10-20%, others), new drugs
 - Pao et al., PLoS Med 2:e17, 2005; Engelman et al., Science 316:1039, 2007
- Erlotinib approved as single agent for 1st, 2nd and 3rd line treatment of NSCLC
 - Also for maintenance after 1st line non-progression after chemo
 - Afatinib, gefitinib also approved

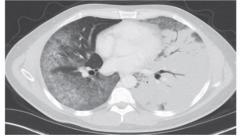
EML4-ALK

EML4-ALK Fusion Gene as a Target for NSCLC

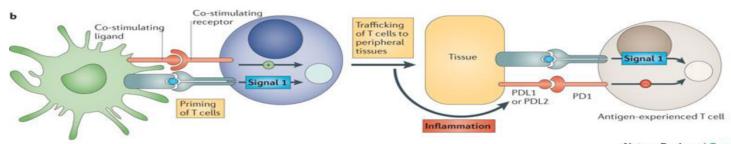
- Identified in 2007
- ~5% NSCLC, mainly never smokers
- Striking response to inhibitor crizotinib- 57% RR, 33% stable disease (FDA approved)
 - Kwak EL et al. NEJM 2010;363:1693
- 2nd line agent approved (ceritinib), 56% RR
 - Shaw AT, et al. NEJM 2014;370:1189
- Multiple mechanisms of resistance


Shaw AT et al., JCO 2009;27:4247


ROS1 Rearrangements


ROS1 Rearrangements as a Target


pre-Rx

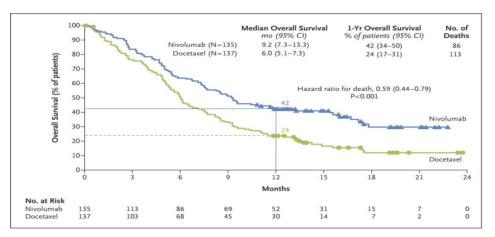


- Tyrosine kinase (insulin receptor family)
- 1.7% of NSLC have rearrangements
- Multiple different partners
- crizotinib RR=72%, median duration 17.6 mths
 - Shaw AT et al., NEJM 2014;371:1963

New Approaches-Immunotherapy

New Approaches - Immunotherapy

- PD-1
 - T-cell co-inhibitory receptor, regulates T-cell activation
 - Main role: to limit activity of T cells in peripheral tissues during inflammatory response to infection and to limit autoimmunity
 - ligands PD-L1 (frequently expressed on tumors) and PD-L2
 - Blockade of PD-L1/PD-1 interaction potentiates immune response (to tumor)



Nature Reviews | Cancer

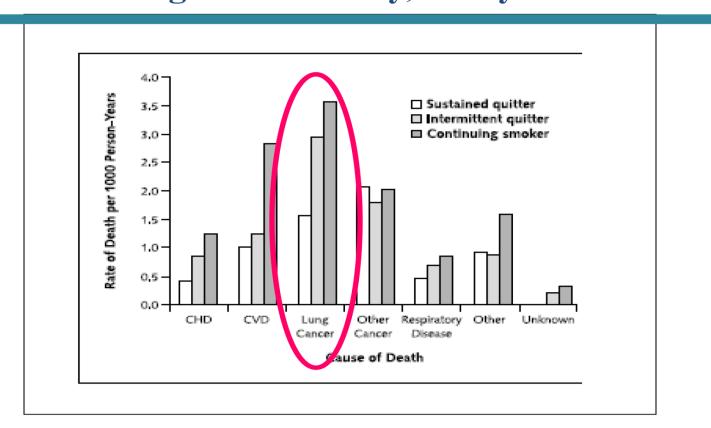
Immunotherapy

New Approaches - Immunotherapy

- Anti-PD-1 antibodies approved for 2nd line NSCLC; nivolumab and pembrolizumab (PD-L1+)
 - ~20% response rate (vs. 10% docetaxel)
 - ~3 month improved overall survival nivolumab c/w docetaxel
 - Long term responses (median duration 12.5 mths with pembro)

Squamous, nivolumab:
-Brahmer J et al. N Engl J Med
2015;373:123-135.

Non-squamous, nivolumab: Borghaei H et al. N Engl J Med 2015;373:1627-1639 Any NSCLC, pembrolizumab: Garon EB et al. N Engl J Med 2015;372:2018-2028


Approaches to reducing cancer morbidity and mortality

- Prevention (primary, secondary, tertiary)
- Early detection

Better therapeutics

Smoking Cessation and Lung Cancer

Effect of Smoking Cessation on Lung Cancer Death Lung Health Study, 14.5 yr F/U

Lung carcinogenesis

The Continuum of Lung Carcinogenesis

Opportunities for Intervention

Normal → Hyper/Metaplasia → Dysplasia → Early-Late Cancer

Prevention

Early Detection

Treatment

Cancer Chemoprevention

The use of natural or synthetic agents to suppress or reverse carcinogenesis

- Regress existing neoplastic lesions (treat intraepithelial neoplasia)
- Prevent development of new neoplastic lesions (preneoplastic and cancer)
- Suppress recurrence of neoplastic lesions

Lung Cancer Prevention

Rationale for Lung Cancer Prevention

- Metastatic cancer is rarely curable
 - US lung cancer 5 yr survival is ~15% (5% 1950's, 13% 1970's)
- Cancer is preventable
 - P1, STAR breast cancer prevention trials with tamoxifen and raloxifene
 - Fisher B et al., JNCI 1998;190:1371; Vogel, VG et al., JAMA 2006;295:2727
 - Multiple animal studies with multiple agents
- Long preclinical phase with increasing histologic and molecular abnormalities, identifiable populations at risk

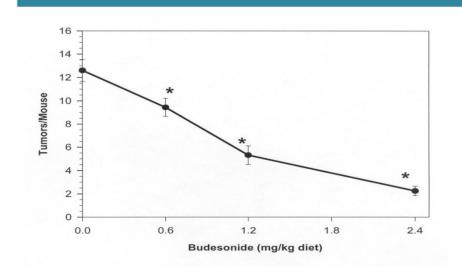
Efficacy: How Do We Identify New Agents?

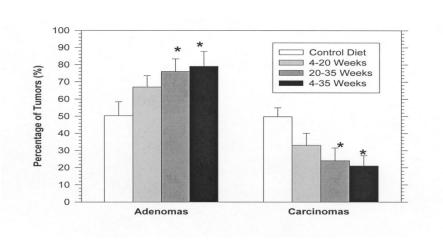
- Knowledge of mechanism
 - Example: HPV vaccine and cervical cancer
 - Need: understanding molecular pathogenesis
- Preclinical (in vitro and animal models)
 - Example: NSAID treated carcinogenesis and transgenic models
 - Need: models reflective of complexity of human disease
- Observational epidemiology (cohort and casecontrol studies)
 - Example: NSAIDs and colon cancer incidence/mortality
- Secondary endpoints from clinical trials (including other diseases)
 - Example: Tamoxifen/raloxifene and breast cancer

Clinical agents

Clinical Agent Development – What are the major issues?

- Targets/agent selection correctly match target/agent to right process/person (Precision Medicine)
 - Different pathogenesis/progenitor cell lineages→different intervention?
 - Temporal considerations accumulating molecular abnormalities over time may require different strategies to be delivered at different time points
- Cohort selection
 - Squamous (central) cancers bronchial dysplasia?
 - Adenocarcinoma (peripheral) cancers lung nodules?
 - Other histologies ???
- Risk-benefit balance
 - Efficacy vs. tolerability or major adverse side effects
- Endpoints cancer for phase III, intermediate endpoints (preliminary efficacy) for phase II
- Clinical trial designs


Targeting inflammation


Targeting Inflammation for Lung Cancer Prevention: Rationale

- Animal data showing role for steroids in cancer prevention
 - 1970's skin
 - Early 1990's lung (oral steroids)
 - Late 1990's lung (inhaled steroids)
- Epidemiology/Human data
 - Mainly negative (but studies of short exposure duration)
 - VA cohort with COPD (n=10,474) HR 0.39 (95% CI, 0.16-0.96)
 - Parimon T et al., AJRCCM 175:712, 2007

Budesonide and Lung Tumorigenesis

Effect of Budesonide on Mouse Lung Tumorigenesis

-82% decrease in tumors

-Shift from adenoma to carcinoma

Bronchial Dysplasia

Premalignant Squamous Lesions Bronchial Dysplasia – precursor and risk marker

Invasive SCC variants: Keratinizing, Non-keratinizing, Basaloid, Papillary Mod: HS=5 NL: HS=1 Mild: HS=4 RCH: HS=2 CIS: HS=7

Squamous cell carcinoma precursor

Squamous Cell Carcinoma Precursor: Bronchial Dysplasia

- Progression to cancer based on bronchoscopic dx, median 2-3 yr f/u (Bota et al., Am J Respir Crit Care Med 2001:164;1688; Venmans et al., Chest 2000:117;1572; Breuer et al. Clin Cancer Res 2005:11;537)
 - Metaplasia: 37-42% regress, 2-9% CIS/cancer (at 4-59 mths)
 - Mild/moderate dysplasia: 37-64% regress, 9% CIS/cancer (at 7-57 mths)
 - Severe dysplasia: 41-52% regress, 32% CIS/cancer (1-32 mths)
 - Carcinoma in situ: 56% progress at site (44% also had severe dysplasia or CIS elsewhere)
- 164 pts. with low or high-grade lesions (Van Boerdonk et al., Am J Respir Crit Care Med 2015;192:1483)
 - 33.5% developed invasive cancer, median 16.5 mths
 - 41% cancers developed from abnormal site, 59% from other sites (central or peripheral)
 - High grade lesions assoc with cancer; COPD and prior hx lung ca assoc with OS
- Bronchial dysplasia both precursor and risk marker for abnormal field

Phase IIb Trial

DCP Phase IIb Trial of Inhaled Budesonide in Bronchial Dysplasia

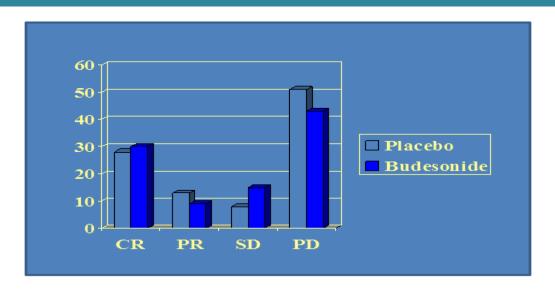
112 smokers with dysplasia

Bronch, Helical CT

Screened (sputum): 1040

Cancers detected: 13

Budesonide vs. Placebo x 6mths


Bronch,
Spiral CT)

1º Endpoint: bronchial dysplasia (#sites/grade)

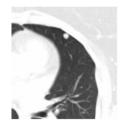
2º Endpoints: multiple biomarkers

Inhaled Budesonide

Phase IIb Trial of Inhaled Budesonide in Bronchial Dysplasia

- Bronchial dysplasia no effect of 6 mth Rx
- CT-detected lung nodules 27% vs. 12% resolved (p=0.024)

Budesonide Trial

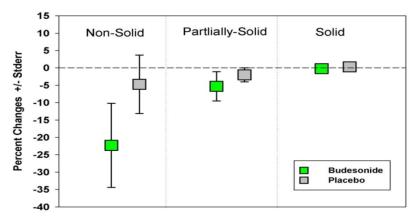

Phase IIb Budesonide Trial in CT-Detected Lung Nodules

202 participants with persistent LD-CT-detected peripheral nodules

Randomize

inhaled budesonide vs. placebo x 1 year

repeat LD-CT


Primary endpoint: shrinkage of lung nodules

Chemoprevention Trial

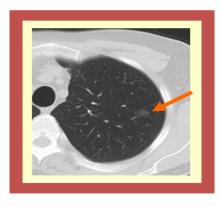
Phase IIb Budesonide Chemoprevention Trial Lesion Specific Analysis

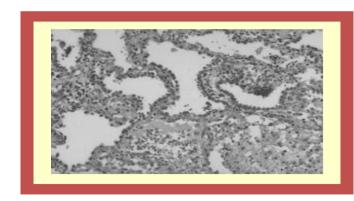


Percent changes in Maximum Diameters at 12 months

5-yr f/u, non-solid

p = .029



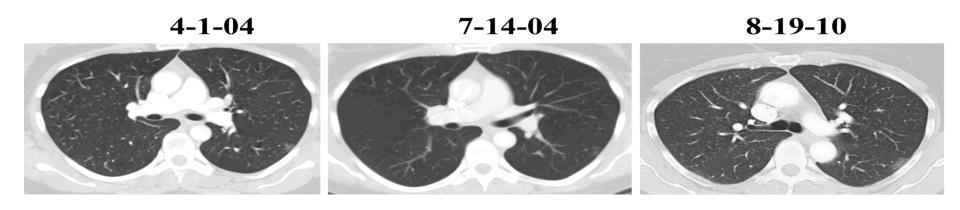

-Overall response negative, but trend toward regression in nonsolid lesions (putative precursors of adenocarcinoma)

> Veronesi et al., Cancer Prev Res 2011;4:34-42 Veronesi et al., Ann Oncol 2015;26:1025-30

Atypical Adenomatous Hyperplasia

Adenocarcinoma Precursor: Atypical Adenomatous Hyperplasia

- Natural history not well understood
- Localized ground glass opacities on CT:
 - AAH 25%; bronchoalveolar ca 50%; invasive adenoca 10%; fibrosis 15% (Nakajima et al., J Comput Assist Tomogr 2002;26:323)
 - AAH 63%; bronchoalveolar ca 34%; scar 3% (Ohtsuka et al., Eur J Cardio-Thor Surg 2006;30:160)


Non-solid nodules

Non-solid nodules – Natural History

- Prospective trial, 795 patients with 1229 subsolid nodules (GGNs, ≤3cm, solid component ≤5 mm)
 - f/u 4.3±2.5 years
 - 1046 pure GGN → 5.4% became part solid
 - 81 heterogeneous GGN → 19.8% became part solid
 - Resected nodules (in 80 patients)
 - 35/997 pure GGNs (9 MIA, 21 AIS, 5 AAH)
 - 7/78 heterogeneous GGNs (5 MIA, 2 AIS)
 - 49/174 part solid GGNs (12 invasive, 26 MIA, 10 AIS, 1 AAH)
 - 1% of all nodules became invasive cancer (all were part solid)
 - 3.3% became MIA, 2.7% AIS, 0.5% AAH

CT-detected Lung Nodule

Evolution of CT-detected Lung Nodule

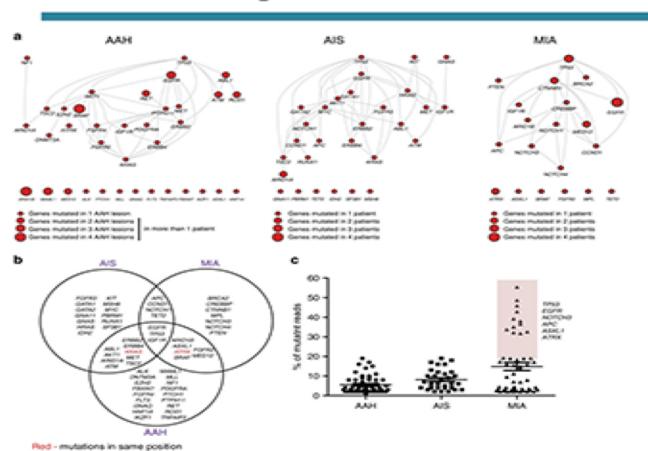
7-25-11

Dx: Invasive adenocarcinoma (stage I) Adjacent AAH

Non-calcified nodules

Non-calcified nodules (NCN) Risk of Lung Cancer in the NLST

	0-23 Months	24-59 Months	60-84 Months
	HR (95% CI)	HR (95% CI)	HR (95% CI)
≥1 10+ mm NCN (vs. only 4-9 mm NCNs)	12.8 (9.5-17.2)	4.7 (2.9-7.5)	N.S.
≥1 NCN w/ Spiculated or Poorly Defined Margins (vs. only NCNs with smooth margins)	4.1 (3.0-5.5)	2.3 (1.5-3.5)	N.S.
≥1 Persistent NCN (vs. non-persistent NCNs)	N/A	4.8 (2.8-8.3)	N.S.
≥1 NCN w/ Ground Glass Attenuation (vs. soft tissue attenuation)	0.3 (0.2-0.4)	N.S.	3.1 (1.4-6.6)

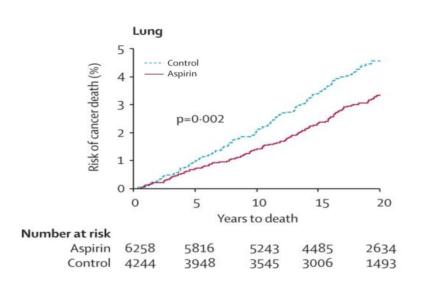

Interpretation:

Increased long-term risk of ground glass nodules suggests <u>some</u> are lung cancer precursors

Pinsky et al. Cancer Prev Res 2014

Mutational spectrum

Mutational Spectrum of Adenocarcinoma Precursors



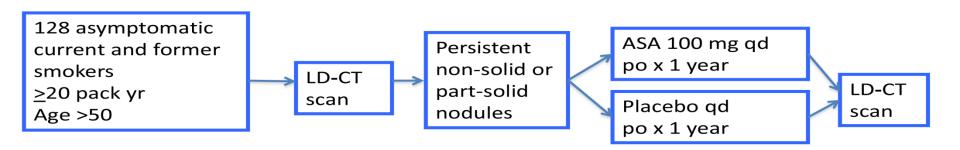
- Targeted nextgeneration sequencing
- 6 patients with AAH
 (5 smoking history),
 5 AIS, 5 MIA
- Spectrum differs
- AAH only p53 and EGFR (1 pt.) or Kras (1 pt) shared with tumor
- AAH: 4/6 BRAF
- DNA repair abn in most
- Heterogeneity in preinvasive lesions

Aspirin and Mortality

Effect of Aspirin on Lung Cancer Mortality

-Rothwell et al., Lancet 2011;377:31

-individual patient data from trials of ASA vs. none


-lung:

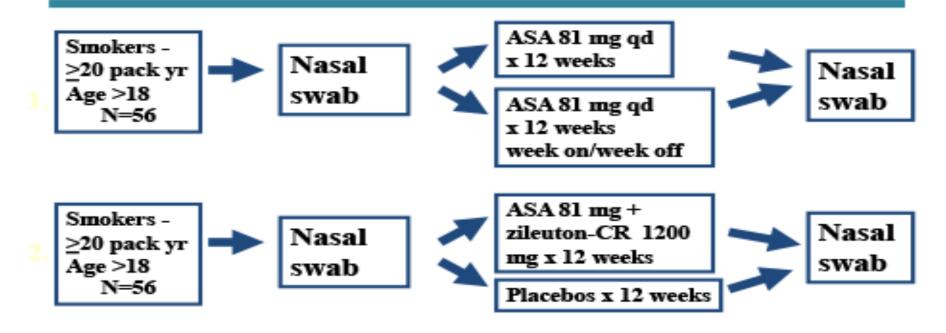
<u>f/u</u>	0-10 yrs	<u>0-20 yrs</u>	
HR	0.68	0.71	
(0.50-0.92, p=0.01)		(0.58-0.89, p=0.002)	

- -adenocarcinoma only
- -benefit only after 5 yrs

Phase II Trial

A Randomized Phase II Trial of Low Dose Aspirin versus Placebo in High-Risk Individuals with CT Screen Detected Subsolid Lung Nodules Pls: Giulia Veronesi, MD and Bernardo Bonanni, MD; IEO

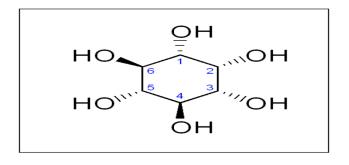
1º Endpoint: #/Size semisolid lung nodules


2º Endpoints: COX/LOX urinary metabolites (hs-CRP, PGEM, LTE4), miRNA signature, nodule-based endpoints

Accrual as of October 15, 2015: 47 participants

Biomarkers

Biomarker Aspirin Chemoprevention Trials


Linda Garland, University of Arizona

- 1° Endpoint: smoking gene expression signature (nasal epithelium)
- 2° Endpoint: PI3K gene expression signature, lung cancer gene expression Signature, COX/LOX urinary metabolites (PGEM, LTE4)

Myo-Inositol

myo-Inositol

- Glucose isomer
- Source of several second messengers & signaling molecules
- Dietary sources (grains, beans, fruits, rice)
- Studied in psychiatric conditions (+/-), diabetic neuropathy(+/-), polycystic ovary syndrome (+)

Rationale for *myo*-Inositol in Lung Cancer Prevention

Efficacy

- Multiple animal studies show inhibition of carcinogen induced tumors in mice (40-50%)
 - Estensen and Wattenberg, Carcinogenesis 1993;14:1975
 - Hecht et al., Carcinogenesis 2002;23:1455
- Inhibits carcinogenesis in mainstream/sidestream smoke-exposed A/J mice by 53%
 - Witschi H et al., Carcinogenesis 1999;20:1375
- Combination with budesonide ↑↑ efficacy up to 80%
 - Estensen and Wattenberg, Carcinogenesis 1993;14:1975
 - Witschi et al. Carcinogenesis 1999;20:1375
 - Wattenberg et al. Carcinogenesis 2000;21:179

Safety

- Used in multiple short term trials for psychiatric and diabetic neuropathy indications – no toxicity reported
- Generally Regarded as Safe (GRAS) by US FDA terminology

Phase I Study of myo-Inositol

Phase I Study of myo-Inositol in Bronchial Dysplasia

- Inhibits B[a]P carcinogenesis in mice (53%); combination with budesonide ↑↑
- HOW OH

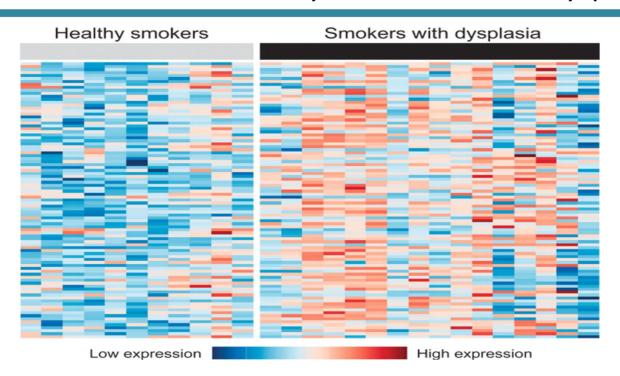

- Phase I study (26 participants)
 - tolerable 18 g/d
 - 91% vs. 48% regression dysplasia, P=0.014 (10 participants)

Table 5. Changes in pathologic grades of bronchial biopsy samples at baseline and after 3 months of *myo*-inositol (18 g): Lesion-specific analysis

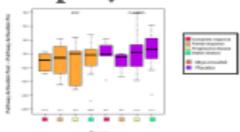
Pathologic grades of bronchial biopsies at baseline	Status after 3 months of treatment			
	N	Stable	Regression*	Progression [†]
Placebo group (from ref. 18)				
Normal/hyperplasia/metaplasia	256	219	0	37
Mild dysplasia	134	72	62	0
Moderate/severe dysplasia	13	5	8	0
myo-Inositol group				
Normal/hyperplasia/metaplasia	38	36	0	2
Mild dysplasia	10	1	9	0
Moderate/severe dysplasia	1	0	1	0

PI3K pathway genes**Phase IIB myo- Inositol Trial**

Increased Expression of Genes Induced by PI3K Pathway Activation in the Airway of Smokers with Dysplasia

- -PI3K pathway is activated in smokers with dysplasia in airway p<0.001
- -Myo-inositol inhibited PI3K activation in normal bronchial airways in smokers with regression of dysplasia (p=0.04)

Myo-Inositol in Bronchial Dysplasia


Phase IIb Study of myo-Inositol in Bronchial Dysplasia

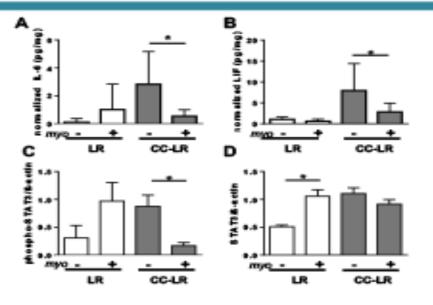
Trial overview

- Age 45-74 years; ≥30 pack yr smoking; ≥1 dysplastic lesion
- myo-inositol 9g bid vs. placebo x 6 mths
- 1º endpoint:
 - ∆ in dysplasia at 6 mths, per participant
- 2º endpoints:
 - -Ki-67
 - -blood/BAL biomarkers
 - -PI3K airway gene signature

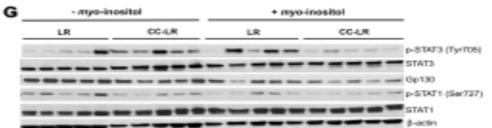
Results (1º endpoint)

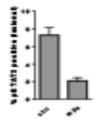
- 85 pts randomized, 74 evaluable for efficacy (myoinositol n=38; placebo n=36)
- CR rate 26.3% vs 13.9%; PD 47.4% vs 33.3% (myo, placebo), p=0.76
- 2° endpt: \(\text{AKT activation in complete responders only} \)
- 2° endpt: ↓IL-6 in BAL

Lam S et al. Cancer Prev Res 2016;9:906


Summary

Summary


- Compared with placebo, myo-inositol 9 g BD x 6 m:
 - significant reduction of IL-6 and borderline significant reduction of myeloperoxidase levels in BAL
 - significant reduction of AKT pathway activation in complete responders
- Heterogeneous response in regression and progression of dysplasia
- Results suggested a targeted therapy approach based on molecular alterations is needed in future clinical trials


Decreased signaling in myo-Inositol fed mice

Decreased IL-6/pSTAT3 Signaling in *myo*-Inositol Fed CC-LR Mice

- No effect on PI3K pathway
- ↓IL-6 in BAL
 (macrophages)
- Macrophage
 phenotype switching †M1 macrophages
- ↓pSTAT3 in tumors

Targeting inflammation

Targeting Inflammation/IL-1β

CANTOS Trial Secondary Analysis

- Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS)
 - 10,061 patients with atherosclerosis, hsCRP≥2 mg/L
 - Dose: 50 mg, 150 mg, or 300 mg sc q3mths vs placebo
 - Median f/u 3.7 yrs

Results:

- Dose-dependent IL-6 reduction 25-43% (p<0.0001)
- Total cancer mortality: HR, 0.49 [95%CI, 0.31-0.75]-300 mg
- Lung cancer mortality: HR, 0.23 [95%CI, 0.10-0.54]-300 mg
- Lung cancer incidence: HR, 0.33/0.61 (p<0.001)-300/150 mg
- No difference in overall survival (\(\gamma\) infection/sepsis)

Note: FDA declined to approve canakinumab for CV indication

Lung Carcinogenesis

The Continuum of Lung Carcinogenesis Opportunities for Intervention

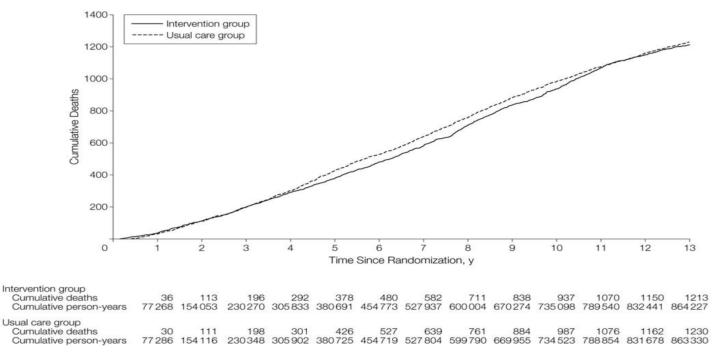
Normal → Hyper/Metaplasia → Dysplasia → Early-Late Cancer

Prevention

Early Detection

Treatment

Lung Cancer Screening


Issues in Lung Cancer Screening

- Lead-time bias = earlier diagnosis but no postponement of death (survival appears longer)
- Length bias = diagnosis of more indolent disease with longer preclinical phase (better prognosis, better outcome)
- Overdiagnosis = identification of clinically unimportant lesions that would not be diagnosed otherwise
- Morbidity/mortality/cost of screening and subsequent work-up

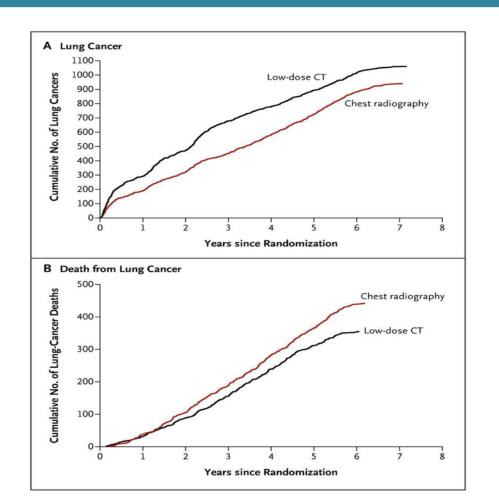
PLCO Trial

PLCO CXR Randomized Trial - Mortality

154,901 participants, PA CXR vs. usual care x 4 screens, 13 yr f/u

NLST (National Lung Screening Trial)

NLST design

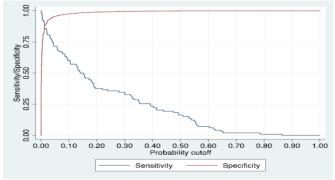

- 53,454 smokers (current and former)
- 30 pack-yr smoking hx; quit ≤15 yrs ago
- Age 55-74
- Helical CT vs. chest X-ray (prevalence, then x2)

NLST results

- CT 24.2% 'positive' tests, 354 lung cancer deaths
- CXR 6.9% 'positive' tests, 442 lung cancer deaths
- 20.0% reduction in lung cancer mortality
- 6.7% reduction in all cause mortality

Lung Cancer and Deaths

Cumulative Lung Cancers and Deaths from Lung Cancer



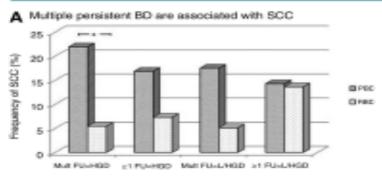
NLST Research Team N Engl J Med 2011;365:395-409

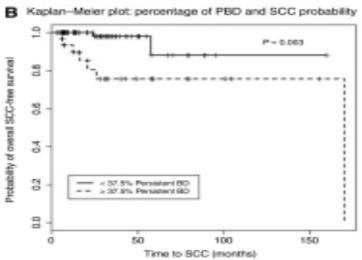
Lung Cancer Risk

Lung Cancer Risk Prediction Model – 1st Screening CT

- Risk of lung cancer in nodules from baseline screening CT
 - Age, sex, family history, emphysema
 - Nodule size, type, location, count
 - -AUC > 0.90
- Ability to identify highest risk:
 - For subsequent screening
 - Chemoprevention (ph III)

• www.brocku.ca/cancerpredictionresearch


Moving forward


How do we move forward? What are the opportunities?

- Understand the biology and natural history of carcinogenesis
 - Understanding natural history of premalignancy TCGA of premalignancy (PCA)
 - Who progresses, who doesn't?
 - Target deregulated processes driving carcinogenesis (not just mutations)
 - Harness the immune response
- Improved clinical trials e.g., sample the field using 'omic' technologies
 - To detect drug effects on deregulated pathways in a short time frame
 - Role of liquid biopsy?
- Focus on at-risk (molecularly?) homogeneous cohorts
- Consider the entire person, at risk for multiple cancers and chronic diseases
- Multiple early phase trial designs to build a "body of evidence" to justify phase III

Bronchial Dysplasia

Progression vs. Regression of Premalignant Lesions: Bronchial Dysplasia

- Persistent bronchial dysplasia is associated with sq cell ca.
 - multiple follow-ups with high grade dysplasia
- Persistence or progression to high grade 7.8-fold increased risk of inv sq cell
- Molecular analyses pending

Summary

Summary

- Tremendous progress has been made in understanding lung carcinogenesis
 - Pathologic classification oversimplifies molecular complexity
 - Heterogeneity in tumors and premalignant lesions complicates efforts to intervene
 - Precision medicine applicable to significant (but small) subset of advanced stage patients, increased survival
 - Early days of immunotherapy prolonged survival in small subset of patients
 - Applications to prevention not yet clear
 - Early detection with helical CT decreased lung cancer mortality
 - New targets and tools available for chemoprevention research

"An ounce of prevention is worth a pound of cure" -Benjamin Franklin

Acknowledgments

Acknowledgments

- DCP Phase II Consortia Program
- Stephen Lam, British Columbia Cancer Agency
- Giulia Veronesi, Humanitas Cancer Institute
- European Institute of Oncology Chemoprevention Group
- Ron Lubet, DCP CADRG
- Avrum Spira, Boston University